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I. Background: Problem, Objective and Methods         

I.1  Problem: Uncertainty and Power Reserve   

Pref 
Pref 

Pref is given by the system operators (power dispatch)  

 Today the consumption/production balancing and OR provision are performed by 

conventional generators. 

"Uncertain 
Variable 
Reserve"  

Constant Reserve 

Uncertainty: Intermittent renewable energy sources (RES) power 

is difficult to predict. 

To cover the risk: Additional Operating Reserve (OR) is needed. 

Massive RES increases the uncertainty in power system and  OR 

is mandatory to maintain the system security level.  

 Problem: how to precisely quantify the OR and locate it into the generators, without losing 

the system security level.  
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I. Background: Problem, Objective and Methods         

I.2  General Organization of Energy Management System (EMS)  

 

Electricity 

Market 

 

Day Hour Second Millisecond 

Load 

Management 

Frequency 

and Voltage 

Control  

Fast Dynamic 

Storage 

Availability  

Load 

Prediction 

Energy Storage 

Availability 

RES Power 

Capability   

RES Power 

Prediction 

Long-term Energy 

Management   

Medium-term   Short-term Power 

Management    

Operational Planning   Energy Adjustment   

Microgrid supervision can be analyzed and classified in different timing scales and functions.  
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I.3 Objectives and Methods 

Predictive Analysis for Uncertainty: 
PV power and load forecasting   

Operating Reserve Quantification: 
Loss of load probability (LOLP) 

Day-ahead Optimization Planning: 

Unit commitment problem with 

dynamic programming 

Microgrid with PV Active Generator (AG) 

I. Background: Problem, Objective and Methods         

OR Dispatching Strategies on 
Generators 

PV Active Generator (PV AG): PV panels combined 

with a storage system to provide ancillary services.  

A User-friendly EMS and 
Operational Planning Supervisor 
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II.1 Data Predictive Analysis and Forecasting 

II. Operating Reserve (OR) Quantification to Cover Uncertainty 

 PV Power and Load Forecasting with ANN 

Load forecasting with ANN  

 Data management: Collect, Mining, and Predictive Analysis  

PV power forecasting With Artificial 

Neural Networks (ANN) 
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II.2 Net Demand (ND) Uncertainty Analysis 

 Second Method: Calculation from the PV Power and the Load Forecast Errors Estimation. 
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II.3 Uncertainty Assessment and Power Reserve Quantification 
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II.4 Operating Power Reserve Quantification 
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With 1 % of LOLP

 Targets 

 Day-ahead dynamic power reserve 

quantification. 

 Day-ahead forecasted PV, load and power 

reserve  LOLP represents the probability that load exceeds PV 

power. 

II. Operating Reserve (OR) Quantification to Cover Uncertainty 
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III. Strategies: OR Provision by MGT and PV AG   

III. Operating Power Reserve Dispatching 
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 Strategy 1: OR on three MGTs only 

 Strategy 2: OR on three MGTs and thirteen PV AGs 
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More details can be found here: X. Yan, D. Abbes, B. Francois, and Hassan Bevrani “Day-ahead Optimal Operational and 

Reserve Power Dispatching in a PV-based Urban Microgrid,” EPE 2016, ECCE Europe, Karlsruhe/ Germany. 

Three MGTs 

Each PV AGs equally 

contributed the OR 
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IV.1 Scheme of Day-ahead Optimal Power Reserve Planning   

 Focus on the design of the MCEMS under particular constraints.  

 Uint commitment problem (UCP) with dynamic programming (DP) is developed in order to 

reduce the economic cost and CO2 equivalent emissions. 
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IV. Day-ahead Unit Commitment Problem with Dynamic Programming 
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IV.2 Non-linear Constraints 

 Security: Reserve power assessment with x % of LOLP; 

 Power balancing: 

 Maximization of renewable energy usage: considering the battery capacity limitation (more PV 

power, larger battery storage !) 
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IV. Day-ahead Unit Commitment Problem with Dynamic Programming 
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IV.3 Unit Commitment Problem (UCP) with Dynamic Programming 
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 Dynamic Programming (DP) 

 Optimization Objectives: 

1. Economic criteria: minimize total fuel cost; 

2. Environmental criteria: minimize CO2 emission; 

3. Best compromise criteria: make a compromise. 

 UCP: Optimal Operational of a cluster of MGTs (since the PV power is prior source) 

IV. Day-ahead Unit Commitment Problem with Dynamic Programming 
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IV.4 Case Study and Simulation Results (1) 

In this case: rated load (110 kW), rated PV power (55 kW) and the OR (with 1 % of LOLP) coming from 

the net demand uncertainty assessment. 

Scenario Optimized criteria Cost (€)   Pollution (kg) OR on AG (%) Ebattery_Max (kWh) 
 

Without PV 

Power  

None 219 1392 0 0 

Environmental 212 1196 0 0 

Economic  210 1263 0 0 

 

Strategy 1:  

None 183 1156 0 80.2 

Environmental 181 1067 0 80.2 

Economic 178 1120 0 80.2 

 

Strategy 2: 

None 182 1098 40 54.1 

Environmental 179 991 40 54.1 

Economic 177 1061 40 54.1 

47% 

14% 

39% 

Without PV power 

MGT1

MGT2

MGT3

AG=0

71% 

10% 

19% 

Strategy 1 

MGT1

MGT2

MGT3

AG=0

30% 

12% 

18% 

40% 

Strategy 2 

MGT1

MGT2

MGT3

AG

 Power reserve dispatching, one day ahead 
40% of OR is on PV AG ! 

IV. Day-ahead Unit Commitment Problem with Dynamic Programming 
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IV.4 Results (2): MGTs Load Ratio and System Security 

 Strategy 1: OR on MGTs 

IV. Day-ahead Unit Commitment Problem with Dynamic Programming 
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IV.4 Results (3): Battery State of Charge   

IV. Day-ahead Unit Commitment Problem with Dynamic Programming 
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V.1 General Framework 

V. A User-friendly EMS and Operational Planning Supervisor  

 
….  

Adopted 

Methods 

for the 

Urban 

Microgrid 

Simulator  

Environmental, Economic, Best 

Compromise  
LOLP  

Scenarios H&L  

OR Quantify  

Mining  Collecting  

Test  Validation  Training  

Big Data 

Predictive Analysis 

Forecast with ANN 

LOLP  

PV Uncertainty 

Load Uncertaitny  

ND Uncertainty Assessment 

Uncertainties 

Assessment for OR 

Quantification 

Constrains  

Unit Commitment   

Dispatching Strategies 

Dynamic Programming 

MGT & PV AG  

Optimization Ceriteria  

Data Collection and 

System Uncertainty 

Analysis  

OR Dispatching 

for UC Problem 

with DP   

 Objective: to conceptualize the overall system operation and to provide a complete set of user-friendly 

GUI to properly model and study the details of PV AG, load demand, and MGTs.  



18/20 

  
V.2 Microgrid Simulator Frame Design 
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V. A User-friendly EMS and Operational Planning Supervisor  
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V.3 Microgrid Simulator Interface Design with Matlab GUI 

 Demonstration 

V. A User-friendly EMS and Operational Planning Supervisor  
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VI. Conclusion 

 PV power variability and load demand variability are analyzed. 

 The ANN algorisms are developed for the PV power and the load forecast. 

 A probabilistic method for the OR calculation based on two different kind of ND 

forecasted uncertainty assessment methods is proposed. 

 The dynamic joint operational and OR dispatching strategies are developed. 

 Day-ahead optimal operational and OR planning with DP is proposed by considering 

different constraints and different optimization strategies. 

 A User-friendly EMS and Operational Planning Supervisor is developed.  

 “Big data” for distributed RES uncertainty analysis and a better forecasting results 

 Optimization method to improve the battery efficiency  

 Build a global EMS to incorporate the predicted uncertainty ranges into the scheduling, 

load following, and into the regulation processes. 

 Prospects  

 Conclusions 



Thank you for your attention ! 
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