Réunion du Groupe de travail sur les microréseaux

Tuesday, November 15, 2016

Operating Reserve Quantification Considering System Uncertainties and Day-ahead Optimal Dispatching of a Microgrid with Active PV Generators

Xingyu YAN (xingyu.yan@ec-lille.fr)

Supervisor: Bruno FRANCOIS & Dhaker ABBES

L2EP, Ecole Centrale Lille, France

Contents

- Part I: Background: Problem, Objective and Methods
- Part II: Operating Reserve (OR) Quantification to Cover Uncertainty
- 1. Power Forecasting with Artificial Neural Networks (ANN)
- 2. Net Demand Uncertainty Analysis
- 3. Power Reserve Quantification
- Part III: Operating Power Reserve Dispatching Strategies
- Part IV: Day-ahead Unit Commitment Problem with Dynamic Programming
- 1. Non-linear Constraints
- 2. Unit Commitment Problem with Dynamic Programming
- 3. Optimization Strategies
- 4. Application: Case Study and Simulation Results

Part V: A User-friendly EMS and Operational Planning Supervisor

Part VI: Conclusions

I.1 Problem: Uncertainty and Power Reserve

Uncertainty: Intermittent renewable energy sources (RES) power is difficult to predict.

To cover the risk: Additional Operating Reserve (OR) is needed.

Massive RES increases the uncertainty in power system and OR is mandatory to **maintain the system security level**.

□ Today the consumption/production balancing and OR provision are performed by conventional generators.

Pref is given by the system operators (power dispatch)

Problem: how to precisely quantify the OR and locate it into the generators, without losing the system security level.

I. Background: Problem, Objective and Methods

I.2 General Organization of Energy Management System (EMS)

☐ Microgrid supervision can be analyzed and classified in different timing scales and functions.

I. Background: Problem, Objective and Methods

Operational Planning Supervisor

I.3 Objectives and Methods

PV Active Generator (**PV AG**): PV panels combined with a storage system to provide ancillary services.

II.1 Data Predictive Analysis and Forecasting

- ☐ Data management: Collect, Mining, and Predictive Analysis
- PV Power and Load Forecasting with ANN

Load forecasting with ANN

II.2 Net Demand (ND) Uncertainty Analysis

- \square The real ND is composed of the forecasted ND and an error: $ND_h = \tilde{N}D_h + \varepsilon_h^{ND}$
- ☐ First Method: Day-ahead Net Demand Errors Forecast; ND forecasting errors
 - Second Method: Calculation from the PV Power and the Load Forecast Errors Estimation.

II.3 Uncertainty Assessment and Power Reserve Quantification

II.4 Operating Power Reserve Quantification

☐ Power reserve quantification

LOLP represents the probability that load exceeds PV power.

$$LOLP_h = prob(L_h - P_h > 0) = \int_{P_R}^{+\infty} p df(\tau) d\tau$$

☐ Day-ahead forecasted PV, load and power reserve

- Targets
- Day-ahead dynamic power reserve quantification.

III. Strategies: OR Provision by MGT and PV AG

☐ Strategy 1: OR on three **MGTs only**

□ Strategy 2: OR on three MGTs and thirteen PV AGs

More details can be found here: X. Yan, D. Abbes, B. Francois, and Hassan Bevrani "Day-ahead Optimal Operational and Reserve Power Dispatching in a PV-based Urban Microgrid," EPE 2016, ECCE Europe, Karlsruhe/Germany.

IV.1 Scheme of Day-ahead Optimal Power Reserve Planning

- ☐ Focus on the design of the MCEMS under particular constraints.
- ☐ Uint commitment problem (UCP) with dynamic programming (DP) is developed in order to reduce the economic cost and CO₂ equivalent emissions.

IV.2 Non-linear Constraints

- \square Security: Reserve power assessment with x % of LOLP;
- Power balancing: $\psi(t) = P_L(t) + P_{res}(t) \sum_{n=1}^{N} P_{AG_n}(t) \sum_{i=1}^{M} (\delta_i(t) \bullet P_{MGT_i}(t)) = 0$
- ☐ Maximization of renewable energy usage: considering the battery capacity limitation (more PV power, larger battery storage!)
- □ MGT corresponding inequality constraint: $50\% P_{M_{-\max_i}}(t) \le P_{M_{-i}}(t) \le 100\% P_{M_{-\max_i}}(t)$

IV.3 Unit Commitment Problem (UCP) with Dynamic Programming

☐ UCP: Optimal Operational of a cluster of MGTs (since the PV power is prior source)

$$x(t) = [P_{MGT_{-1}}(t), P_{MGT_{-2}}(t), ..., P_{MGT_{-i}}(t)]$$

$$u(t) = [\delta_{1}(t), \delta_{2}(t), ..., \delta_{i}(t)]$$

- Optimization Objectives:
- 1. Economic criteria: minimize total fuel cost;
- 2. Environmental criteria: minimize CO₂ emission;
- 3. Best compromise criteria: make a compromise.
- Dynamic Programming (DP)

Systematically evaluates a large number of possible decision in a multi-step problem considering the "transition costs".

IV.4 Case Study and Simulation Results (1)

In this case: rated load (110 kW), rated PV power (55 kW) and the OR (with 1 % of LOLP) coming from the net demand uncertainty assessment.

Scenario	Optimized criteria	Cost (€)	Pollution (kg)	OR on AG (%)	E _{battery—Max} (kWh)
Without PV Power	None	219	1392	0	0
	Environmental	212	1196	0	0
	Economic	210	1263	0	0
	None	183	1156	0	80.2
Strategy 1:	Environmental	181	1067	0	80.2
	Economic	178	1120	0	80.2
Strategy 2:	None	182	1098	40	54.1
	Environmental	179	991	40	54.1
	Economic	177	1061	40	54.1

IV.4 Results (2): MGTs Load Ratio and System Security

IV.4 Results (3): Battery State of Charge

☐ Strategy 2: OR on MGTs and PV AG

V. A User-friendly EMS and Operational Planning Supervisor

V.1 General Framework

Objective: to conceptualize the overall system operation and to provide a complete set of user-friendly GUI to properly model and study the details of PV AG, load demand, and MGTs.

V. A User-friendly EMS and Operational Planning Supervisor

V.2 Microgrid Simulator Frame Design

V. A User-friendly EMS and Operational Planning Supervisor

V.3 Microgrid Simulator Interface Design with Matlab GUI

□ Demonstration

Conclusions

- □ PV power variability and load demand variability are analyzed.
- ☐ The ANN algorisms are developed for the PV power and the load forecast.
- A probabilistic method for the OR calculation based on two different kind of ND forecasted uncertainty assessment methods is proposed.
- ☐ The dynamic joint operational and OR dispatching strategies are developed.
- ☐ Day-ahead optimal operational and OR planning with DP is proposed by considering different constraints and different optimization strategies.
- ☐ A User-friendly EMS and Operational Planning Supervisor is developed.

Prospects

- ☐ "Big data" for distributed RES uncertainty analysis and a better forecasting results
- ☐ Optimization method to improve the battery efficiency
- ☐ Build a global EMS to incorporate the predicted uncertainty ranges into the scheduling, load following, and into the regulation processes.

Related Publications

- 1. X. Yan, B. Francois, and D. Abbes, "Solar radiation forecasting using artificial neural network for local power reserve," in Electrical Sciences and Technologies in Maghreb (CISTEM), 2014 International Conference, pp. 1-6.
- 2. X. Yan, B. Francois, and D. Abbes, "Operating power reserve quantification through PV generation uncertainty analysis of a microgrid," in PowerTech, 2015 IEEE Eindhoven, 2015, pp. 1-6.
- 3. X. Yan, D. Abbes, B. Francois, and Hassan Bevrani "Day-ahead Optimal Operational and Reserve Power Dispatching in a PV-based Urban Microgrid," EPE 2016, ECCE Europe, Karlsruhe/ Germany.
- 4. X. Yan, B. Francois, and D. Abbes, "Uncertainty Analysis for Power Reserve Quantification in an Urban Microgrid Including PV Generators", **Elsevier, Renewable Energy, under review.**
- 5. X. Yan, B. Francois, and D. Abbes, "Operating Reserve Quantification and Day-ahead Optimal Dispatching of a Microgrid with Active PV Generators," **IET, under review**.

Thank you for your attention!

