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© Motivation



Control of Complex Energy Systems under Vulnerabilities and Risks
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Control Theory for Complex Energy Dynamical Systems

Objectives
o Complex energy dynamical systems (description & management)
o Constraint handling (internal and external influences)
o Stability & robustness (under perturbations)
o Detection and tolerance to fault events (active fault tolerant schemes)

o Centralized vs. distributed vs. decentralized control

Different approaches
@ Agent-based modeling approach Weidlich and Veit (2008)
o Reinforcement learning algorithms Katiraei and Iravani (2006)

@ Robust optimization Conejo et al. (2005, 2006)

o Constrained optimization-based control approaches Hooshmand et al. (2012), Parisio and Glielmo
(2011), Negenborn et al. (2009), Zervas et al. (2008)
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Outline

© Microgrid energy management optimization-based control problem
@ Problem formulation
@ System and model description
@ Optimization-based control for electrical storage scheduling
@ Fault tolerant control strategies



Microgrid energy management optimization-based control problem [ITA RS ERIETI

Microgrid energy management control problem formulation

i(t)
power profile

Goal: Provide an efficient management/scheduling of the microgrid system:
@ minimize the energy costs (minimize buying, maximize selling);
o strengthen the microgrid system (cover essential demands at all time, handle fault events
and power generation variations);
@ minimize wear and tear (especially for the storage component).

Solution: Design a centralized predictive controller which takes into account constraints,
uncertainties, failures and power profiles within the microgrid.

(i) @l Sy
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Problem formulation

Microgrid energy management optimization-based control problem

Microgrid energy management control problem formulation
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Problem formulation
Model Predictive Control (MPC)

Propoi (1963), Richalet et al. (1978), Cutler and Ramaker (1980)

Optimization based control law.
Implicit (on-line) vs. explicit (off-line) implementation.

Constraints handling.

¢ © ¢ ¢

Can be implemented in a distributed fashion.

f&‘4\\h//’y"’%%,

Np—1
argmin Vy(a(k + Np), a(k + Np) + "gl Va(a(k + 5), u(k + 5), q(k + 5))

e(k+s+1) = fa(k+s)ulk+s), s=0:N,—1,
h(z(k+ s),u(k + s),q(k+s)) <0, s=1:Np—1.

subject to: {

constraint sets PP
representation optimization solver
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Dynamic models of the microgrid components

Consider the dynamic model of the electrical storage units S;:

(t+1)=1-o)x()+ X uk(®)— X di) - X () +wi(t),

Mgs(iaj)#o Msd("ﬁj)#o Mse(jvk)#o

with the mixed-integer conditions:

0 < uli(t) < Moy(t), Vi with Mgs(i,j) # 0, ]
0 < () < M(1— a(t), Vk with My(j, k) # 0,
0< uh(t) < M(1 - ag(t)), it 3 with Mse(j) # 0,

- xj(t) € R represents the amount of energy
stored in S; at time step t;

- 0j € R" is the hourly self-discharge decay;

wj(t) € W C R are additive disturbances
affecting the level of battery charge;

- aj(t) € {0,1} are the auxiliary binary
variables which govern the mode switching;

- M € R is an appropriately chosen constant;

- M, € RNa*No adjacency matrix describing
the links among components.
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Dynamic models of the microgrid components

Consider the dynamic model of the electrical storage units S;:

xi(t+1) = (1o

() + S uk()- X - X ul(t) +w(t),

Megs (i.j)70 Miq(i.j)#0 Mse (j, k)#0

Consider the dynamic model of the power
generators G;j:

gi(t+1) = f(gi(t), vi(t)),

which can be approximated with the power curve
transformation Justus et al. (1976):

Power generator transfer function
0| P,
60

10

Wind power [W]

9i(t)
ator power profile

5 Ve 10 5 20 2% VY 35
Wind speed [m/s]
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Microgrid energy management optimization-based control problem [ECHES TN Rt S R ey

Constraints description within the microgrid system

At least the essential demand has to be supplied to the users:
; ”
dis() < D0 e+ D0 dg()+ D ulkg(e) < di(t) + dhe(t).
Mgy (i,k)7#0 Msq (i, k)7#0 Meq (k)70

Magnitude and variation bounds on the quantity of
stored energy:

Blin < Xj(t) < By,
VrJnin < ij(t) < VrJnax‘

Physical limits on the energy transfer:

0<u(t) <,

. T
[ ik i gk ok N,
u= [ugs ugd Uge uid u.jse Ueq € R™.

.. . . . . T
= _ | =i =ik =i =k = =k N,
u= [ués gy Oge iy e ued] € R™.

Limitations on the generator power outputs:

0< > Wi+ DD uk+ DD ul(t) <ait).

Mgs(7.)7#0 Mga (i, k)70 Mge(i)0
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System and model description

Reference profiles

Real numerical data for power system reliability evaluation studies Grigg et al. (1999):

@ Consider the nominal reference profiles:

Consumer load profile d(t)
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@ Consider the real reference profiles affected by bounded disturbances:

d(t) +wd‘(t)‘ » e(t) f‘we(‘t)b » v(t) + w(t)

Nominal wind speed and the uncertainty range

B
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[VITCEe=0te WEL AN EUET-CH I Tl T TPV BEEC RS TTCIINICISU Ml Optimization-based control for electrical storage scheduling

Microgrid costs

Penalize for the wear and tear cost of the storage:

Ns

Cs(t) :Z aj(t) — aj(t — 1))

Penalize the difference between provided load and
required demand:

Nd . .
Ca(t) = > di(t) — SN+ S0 dkm+ DD
k=1

Mq (i, k)70 Megq (i,k)7#0 Meq (k)70

Penalize buying and encourage selling electrical power:

C(t)=e(t)- | D uq(t) = D upe(t)= > uh()

Meq (k)70 Mege ()70 Mse (j)#0

I. Prodan and E. Zio, (IJEPES'14)
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[VITCEe=0te WEL AN EUET-CH I Tl T TPV BEEC RS TTCIINICISU Ml Optimization-based control for electrical storage scheduling

Constrained MILP control problem

Construct an optimal control sequence u = {u(k), u(k +1),--- ,u(k+ N, — 1)}
over a finite constrained receding horizon, with u = [ugjs ”gd ge u’ u’ ug } € RVv and
a = [aj] € {0,1}"s the decision binary variables:
Np—1
u* = arg min > veCe(t+ 1) +7aCal(t + 1) + 1 Cs(t +1),

u(t),u(t+1), - ,u(t+Np—1),a |=p

subject to the set of constraints:

x(t+14+1) = Ax(t + 1) + Bepu(t + 1) + Bgiscpu(t + /) + w(t + /),
0 < Bepu(t+ /) < Ma(t +1),

0 < Byischu(t + 1) < M(1 — a(t + 1)),

Bmin < X(t+ I) < Bmax,

Vmin < Ax(t + I) < VmaX7

0<Gu(t+1) <g(t+1),

des(t"l‘ I) < Du(t + I) < des(t"l‘ I) + dnes(t + 1)7
0 <u(t+ /) <

for I =0,. — 1.
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Microgrid energy management optimization-based control problem

Fault tolerant control strategies

Total output failure i.e., some of the generators
may fail to provide power:

0 < Gu(t) < Brg(t),

where Bf = diag({0,1}"s) characterizes the
generators functioning.

External grid

=

}
- y
/e
{ A trenciormer
(8

Fault tolerant control strategies

Nominal power generator and the uncertainty range

2500,
fault event a1t)
—tt)

20 10 160 100 0

CRCIC]
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| Te()
| electricity price profile

[Vicrogrid
\

~ uk(t)

\

e ,,\ \ e
\ N

) " !
f ‘,‘ N
/)u;,m

"N\ E (2]

.,;;m\

|

 Storages

Wi, (t)

wi(0)

= au(t)
ator power profile
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Microgrid energy management optimization-based control problem Fault tolerant control strategies

Fault tolerant control strategies

Nominal pos

Total output failure i.e., some of the generators
may fail to provide power:

0 < Gu(t) < Brg(t),

where Bs = diag({0, l}Ng) characterizes the N NC N
generators functioning.

Consider the following restrictive assumptions:
o the microgrid fulfills only the essential demands;

o the remaining healthy generators do not sell power to the external grid (uée(t) =0);

o the external grid gives the maximum amount of power to the user (uX,(t) = T%)).

I. Prodan, E. Zio, F. Stoican (Energy'15)
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Microgrid energy management optimization-based control problem [T SENIRIN T RTete e

Fault tolerant control strategies - electrical storage capacity bounds

The FTC scheme implements an adaptive control which modifies minimal storage bounds B,
w.r.t. the fault events:

o healthy functioning (fault tolerance and cost minimization ensured):

Bh,min = min Bmin]-Ty

h,min

) t+MTTR;—1 . . .
> B‘,’nm(t) > > max |0, dg(7) — Uk, — Lléd(T) ,
Meg (7,40 7=t Mgy (i,K) 70,8 (7,1)£0
.t Ny
s S uk(r) = gi(r), Be(i,))#0, T=t...t+ MTTR — 1,
k=1
0 < Bmin < Bmax, where Bh,min = [Bfl,’m,',, cee ;I,\fsm,'n]-
j(t) 2 Bpn(t)
z;(t) > B, (t) z;(t) t+ Ny <t < x;(t) )
tID decreases tl1 <t + MTTF <t tlz decreases ils time
CMTTR ., MTTF ., MTTR .
) MTBF f

(i) o @l Sy
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Microgrid energy management optimization-based control problem [T SENIRIN T RTete e

Fault tolerant control strategies - electrical storage capacity bounds

The FTC scheme implements an adaptive control which modifies minimal storage bounds B,
w.r.t. the fault events:

o faulty functioning (essential demands satisfied, degraded performance):

Bf,min =0

Enforce only Bpin = (1 — DoD)Bpmax for the interval MTTR.

j(t) = Byy(t)
zj(t) > Byn(t) ] x;(t) ) t+ Ny <t < . x;(t) . )

Io decreases I1 <t + MTTF < t, |2 decreases |3 time
T T T T
_MTTR ., MTTF ., MTTR .

AJ 7N LAY L4

¢ >

MTBF

(i) o @l Sy
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Fault tolerant control strategies - electrical storage capacity bounds
The FTC scheme implements an adaptive control which modifies minimal storage bounds B,

w.r.t. the fault events:

e “nominal after fault” functioning (gradual increase of storage bounds towards the safe
values):

B/, min(T) = Bmin(t1) + T,\Tﬁltll (Bh,min(t1 + Ngiy) — Brmin(t1)),

where Ny represents a feasible recharging interval obtained by solving a minimal time
problem:

Nf,'/[ =min T

X(t1 +7) > By min(t1 +7), Vj=1,..., Ns,

s.t dynamical model of the microgrid system and
physical constraints are verified for t=t1,...,t1 + 7.
j(t) 2 Bpn(t)
Zj (t) = Bfmn(t) Zl(t> t+ Ny <t < ’JJ,(I‘)

tID decreases tl1 <t + MTTF <t tlz decreases ils time
U MTTR .,  MTTF ., MTTR .

AJ 7N LAY L4

¢ >

MTBF
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Microgrid energy management optimization-based control problem [T SENIRIN T RTete e

Fault tolerant control strategies - example

Batery 1 charge level and minimal capacity bound

7,000

6,000

,000

000

=3
S
S

=
z
2
g
z,
£
1>
il
mZ‘

1,000
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j(t) = Byy(1)

z(t) = Byin(t) z;(t) ti+ Npp <t < x;(t) )
tlo decreases t|1 <t + MTTF <t tlz decreases ils time
_MTTR ., MTTF ., MTTR
) MTBF f
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Simulation results and comparison ESIATIETLEEENIN

Simulation results

Consider the microgrid system with numerical data of a test system (IEEE RTS—96) developed for
bulk power system reliability evaluation studies Grigg et al. (1999).

External Grid

6kV
Electricity price Distribution
e (t) Transformer

Microgrid

ugy(t)
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Simulation results and comparison ESIATIETLEEENIN

Simulation results

Battery load and power signals are shown along the simulation horizon (i.e., 100 hours) for
pre-known consumer, electricity price, generator power profiles and N, = 5:

Battery 1 charge level

0
5 5 60 65 70 75 S0 85 90 95 100 105 110 115 120 125 130 135 140 145 150
Hours [h]

Variation of the battery 1 charge level

Electricity [Wh]

—2,000
5 55 60 65 70 75 S0 85 90 95 100 105 110 115 120 125 130 135 140 145 150
Hours [h]

o Battery load and charge constraints are verified.

o=13-10"% BL,, = 12-10% [Wh], Vi = —15-10° [Wh],
M =910 B}, = 6-10% [Wh], Vi, =15-10° [Wh].
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Simulation results and comparison ESHAITIETIREEENIE

Simulation results

Battery load and power signals are shown along the simulation horizon (i.e., 100 hours) for
pre-known consumer, electricity price, generator power profiles and N, = 5:

User 1 demand profile and sources.

profile bounds
uE(0)-Fulg ()l (1)
-dg(t) +d,,, (1)
“dyea(t)
-

nes

Electrical power [W]

5055 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150
Hours [h]

Generator power 1.

E profile bounds
=2,000 N L= (t)

o ——— 12 1

g ‘ w (6) (1) Fug (£)
=9

F000

]

g

2

3]

0 f
50 55 60 65 70 75

%

)85 90 95 100 105 110 115 120 125 130 135
Hours [h]

o Consumer demand is always satisfied.

o Generator power stays within a tube around the nominal curve.
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Simulation results and comparison

Simulation results

Simulation results

Battery load and power signals are shown along the simulation horizon (i.e., 100 hours) for
pre-known consumer, electricity price, generator power profiles and N, = 5:
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o Storage values and minimal bound for the first storage unit under a fault event affecting the
second generator, Gy during the interval [60, 65] hours.
MTTF =5 hours, Ngy = MTTR = 20 hours.
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Comparison results

Compare the proposed MPC algorithm with a reinforcement learning algorithm on medium-term
(2 steps-ahead) scenarios as in Kuznetsova et al. (2013):

B2 be(r) B2 gn(t) smax -
Vo = st;gx Vi = 7:;1 i E= (; d(t) — ; bC(f)> e(t)
2 d(t) EO g(t) N -

Values of the performance indicators over a year long simulation

Values of the performance indicators obtained in (Kuznetsova et al., 2013)
with a reinforcement learning algorithm
Vo Vi E
Minimal | Maximal | Minimal | Maximal | Minimal Maximal
0.102 0.109 0.176 0.186 2.863-107 | 2.890 - 107
Values of the performance indicators obtained with the proposed MPC
algorithm
0.196 || 0.389 || 1.807 - 10°

Advantages of the MPC algorithm
@ Performs noticeably better in what regards the criteria Vg, V4, E.
@ Has a variable prediction horizon which allows for increasingly optimal input values.

@ It is relatively easy to add constraints regardless of their nature (convex or non-convex).
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Compare the proposed MPC algorithm with a reinforcement learning algorithm on medium-term

(2 steps-ahead) scenarios as in Kuznetsova et al. (2013):

Vo — ratio of the cumulative power
taken from the battery to the yearly

cumulative load.

Values of the performance indicators over a year long simulation

E — cumulative annual expenses for

Vi — ratio of the yearly cumulative
power purchases from the external

power taken from the wind
generator to the yearly cumulative
available wind power output.

grid.
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Values of the performance indicators obtained with the proposed MPC
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0.196 || 0.389 || 1.807 - 10°
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Undergoing work

Undergoing work

Extension of the proposed optimization-based control approach for DC microgrid elevator system
T.H. Pham et al..

Elevator
system 3 d

Solution: Load balancing DC microgrid elevator system using a coherent combination between
- port-Hamiltonian approach for physical system modeling,
- differential flatness for profiles generation,
- predictive control for taking into account constraints, optimization costs and reference
profiles.
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Undergoing work

Extension of the proposed optimization-based control approach for DC microgrid elevator system
T.H. Pham et al..

e provide a speed profile for the elevator

Sunfercapabitsh system so that the dissipated energy is
minimized.
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Solution: Load balancing DC microgrid elevator system using a coherent combination between
- port-Hamiltonian approach for physical system modeling,
- differential flatness for profiles generation,

- predictive control for taking into account constraints, optimization costs and reference
profiles.
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Undergoing work

Undergoing work

Extension of the proposed optimization-based control approach for DC microgrid elevator system
T.H. Pham et al..

e provide a multi-layer control procedure for

nominal profiles generation for the low level
dynamics.
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Solution: Load balancing DC microgrid elevator system using a coherent combination between
- port-Hamiltonian approach for physical system modeling,
- differential flatness for profiles generation,

- predictive control for taking into account constraints, optimization costs and reference
profiles.
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Undergoing work

What are the challenges in the design, control and management of interconnected microgrid
energy systems?

External Grid

electricity price Transformer

Microgrid
be(t)

Lo(t)
wind
speed

I Battery

][ be(t) 2 gt 90
L F

Microgrid Micragrid

dit) be(t)

load

p(t) be(®)

][ by(t)
bel(t) [ Battery k (1) |
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Undergoing work

Interconnected microgrid systems

Goal:
energy system.

Ensure load balancing within the global

Open issues

°

take into account transmission costs;

analyze the importance of the dependency links between the systems;

consider, for example that all the microgrids are connected to a ‘“failsafe” external grid which
give electricity only in the case that the local demand is not satisfied;

integrate mixed-integer techniques to efficiently describe on/off states and operating modes
of different components added to the grid;

develop efficient decentralized, distributed and/or hierarchical strategies which will establish
optimal operation of electrical storage units;

account for slow and fast time scale behavior when formulating the dynamic scheduling
problem;

study and design fault tolerant control strategies which take into account the topology of the
system within a set-theoretic framework.
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Summary

Summary

@ Model Predictive Control and fault tolerant design for reliable microgrid energy management.

o Mixed-integer Linear Programming for electrical storage scheduling.

Essential and non-essential user demand satisfaction.

o Constraint and control reconfiguration for fault mitigation.

Model Predictive Control Mixed-Integer Programming
(MPC) (MIP)
Rawlings and Mayne (2011) Jiinger et al. (2009)

et \ fion-convex
w| feasible region
7!
=
a, Ny 1
—_U
E—1kk+1 k kLN,
1 o s i

Flatness for profile
generation
Fliess et al. (1995)

)

u= o

T o= Pplz )N

z=q(mu,...)

OProdan I., Stoican F., Olaru S. and Niculescu S-I. (2016): Mixed-Integer Representations in Control Design, SpringerBriefs in

Control, Automation and Robotics Series, Springer.
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