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Context and medical background

Glaucoma:
Degeneration of the optic nerve
and death of retinal ganglion
cells leading to irreversible
vision loss.

http://www.drnrr.com/glaucoma

Question:
What is the cause of this degeneration?

Standard clinical evaluations:
intraocular pressure (IOP) via
Goldmann tonometer;
visual functions via visual field test.

A multi-factorial disease:
elevated IOP is a recognized risk factor,
however the establishment of optimal IOP
levels for patients is still controversial;
numerous other risk factors in the
literature: age, gender, genetic factors,
diabetes, blood pressure etc.



Today’s Talk:

Mathematical and computational models for biofluids:
Complex multiphysics and multiscale phenomena.
Develop innovative methods for analyzing contributions of IOP and
non-IOP risk factors for glaucoma, on an individual-specific basis.

Outline:

Part I. A new splitting approach to numerically solve geometric
multiscale problems. First-order and second-order approximations.

Part II. A multiscale model coupling hemodynamics, biomechanics and
fluid dynamics in the eye. Development of the Ocular Mathematical
Virtual Simulator.

Conclusions and outlook: relationship between neurodegenerative
disorders in the brain and in the eye.



Mathematical modeling: 3D description of the fluid flow
through a large vessel

Blood: homogeneous, incompressible fluid, with “standard” Newtonian
behavior, unsteady Navier-Stokes equations:

ρ
∂u
∂t − 2div(µD(u)) + ρ(u · ∇)u +∇p = 0, in Ω× I

div(u) = 0, in Ω× I
+ Initial and boundary conditions,

where:
- u and p velocity and pressure of the fluid;
- D(u) = 1

2 (∇u +∇uT ) strain rate tensor;
- σ(u, p) = −pI + 2µD(u) Cauchy stress tensor;
- ρ and µ density and dynamic viscosity of the fluid.



Mathematical modeling: 3D description of the fluid flow
through a deformable porous media

Balance equations: conservation of mass of fluid phase and of linear
momentum for the fluid+solid mixture, respectively:

ζt +∇ · v = S and ∇ · T + F = 0 in Ω× (0,T )

Constitutive equations:

total stress: T = Te(u) + δTv (ut)− αpI
discharge velocity: v = −K∇p
fluid content: ζ = c0p + α∇ · u

.

+ Initial and boundary conditions, where:
u the solid displacement, p the Darcy fluid pressure;
λe and µe are the elastic parameters, and λv and µv are the
viscoelastic parameters (Kelvin-Voigt);
K the permeability tensor, α is the Biot-Willis coefficient, S is a net
volumetric fluid production rate, F is a body force per unit of
volume.



Mathematical modeling: reduced 0D description
Main idea: circuit-based representation of the cardiovascular system,
analogy between electric and hydraulic networks.

Hydraulic Electric

Pressure Voltage
Flow rate Current
Volume Charge

Blood viscosity Resistance R
Blood inertia Inductance L

Wall compliance Capacitance C

Objective: Provide a systemic view, while maintaining a relatively
accessible mathematical complexity and low computational costs.

Mathematical model: Kirchhoff laws for the nodes (conservation of
current/flow rate) and for closed circuits (conservation of the
voltage/pressure) ⇒ system of differential algebraic equations:

dym
dt = Am(ym, t)ym + rm(ym, t), m ≥ 1.



A new 0D model for the coupled eye-cerebral system
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0D coupled model for the Body-Brain-Eyes
system.
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Applications:
Glaucoma: MS et al. Mathematical modeling of aqueous humor

flow and intraocular pressure under uncertainty: towards

individualized glaucoma management, JMO 2016.

Microgravity: F. Salerni et al. Biofluid modeling of the coupled

eye-brain system and insights into simulated microgravity conditions,

PLoS One 2019.

UQ and SA: L. Sala et al. Uncertainty propagation and

sensitivity analysis: results from the Ocular Mathematical Virtual

Simulator, MBE 2021.



Multiscale approach: coupling of reduced (0D) and
distributed (3D) fluid flow models

Why?
Reliable method for computing correct boundary conditions at the
artificial boundaries of a region of interest OR
Rough description of the whole system + zoom in a specific region of
interest.

Coupling conditions: continuity of the pressures and fluxes.

Ωl

Sl,m

Pl,m

Ql,m

Υm

Coupling between a Navier-Stokes region Ωl and a lumped circuit Υm via the interface Sl,m .(
− pl I + µ∇v l

)
nl,m = −Pl,m(t)nl,m(x) for x ∈ Sl,m and t ∈ (0,T ),

Ql,m(t) =
∫
Sl,m

v l (x, t) · nl,m(x)dSl,m for t ∈ (0,T ),

where Pl,m is the pressure at the node of the circuit sitting on Sl,m and Ql,m contributes as source/sink for the circuit Υm .



Numerical approximation of the coupled problem:
two strategies

Implicit - Monolithic approach:

the coupled problem is
solved in one block
same solver and time
discretization
unconditionally stable
fully coupled matrix
might be ill-conditioned
(needs of preconditioning)

Explicit - Splitting approach:

split coupled problem in two
or more blocks (PDEs and
ODEs)
need for sub-iterations
between blocks
use existing solvers for solving
subproblems separately
(separate non-linearities)
stability and convergence
issues due to splitting

A. Quarteroni, S. Ragni, A. Veneziani Comput Vis Sci. (2001), A. Quarteroni, A. Veneziani SIAM MMS (2003), C. Bertoglio, A. Caiazzo,

M.A. Fernandez SIAM SciComp (2013), M. E. Moghadam et al. JCP (2013), A. Quarteroni, A. Veneziani, C. Vergara CMAME (2016),

C. Grandmont, S. Martin M2AN (2021) etc.



A new energy-based splitting scheme for the Stokes-ODE
coupled problem
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Geometrical architecture of the coupled system.

L. Carichino, G. Guidoboni, MS, Energy-based operator splitting approach for the time discretization of coupled systems of partial and

ordinary differential equations for fluid flows: the Stokes case, JCP 2018.



Mathematical setting: a Stokes-ODE coupled problem

Stokes system + boundary and interface conditions:

v l = 0 on Γl × (0,T )(
− pl I + µ∇v l

)
nl = −plnl on Σl × (0,T )(

− pl I + µ∇v l

)
nl,m = −Pl,m(t)nl,m(x) on Sl,m × (0,T )

Ql,m(t) =
∫
Sl,m

v l (x, t) · nl,m(x)dSl,m for t ∈ (0,T ).

+ circuit equations:
dym
dt

= A
m

(ym, t)ym + rm(ym, t)

+
rm(ym,Ql,m,Pl,m, t) = sm(ym, t) + bm(Ql,m,Pl,m, t)

where:
sm(ym, t): contributions of sources and sinks for the circuit;
bm(Ql,m,Pl,m, t): contributions from the Stokes-circuit connections.
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Operator splitting approach for the time discretization
Time step ∆t, tn = n∆t, ϕn = ϕ(t = tn) for any general expression ϕ.

Step 1
For each l ∈ L and m ∈ M, given vnl and ynm , solve

∇ · v l = 0 in Ωl × (tn, tn+1)

ρ
∂ v l
∂t

= −∇pl + µ∆v l + ρf l in Ωl × (tn, tn+1)
dym
dt = bm(Ql,m, Pl,m, t) in (tn, tn+1)

with the initial conditions

v l (x, t
n) = vnl (x) in Ωl and ym(tn) = ynm

the boundary conditions

v l = 0 on Γl × (tn, tn+1)(
− pl I + µ∇v l

)
nl = −pl nl on Σl × (tn, tn+1)(

− pl I + µ∇v l
)

nl,m = −Pl,mnl,m on Sl,m × (tn, tn+1)

with

∫
Sl,m

v l (x, t
n)·nl,m(x, tn) dSl,m = Ql,m(t) in (tn, tn+1)

and set

v
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Splitting scheme features

Main idea: sub-steps are designed so that the energy at the semi-discrete
level mirrors the behavior of the energy of the full coupled system.
R. Glowinski Handbook of Numerical Analysis: Numerical methods for Fluids (Part 3) (2003).

Salient features:
1 solve in a separate step potential nonlinearities in the 0D network.
2 flexible on the choice of the numerical method and discretization for

each sub-step.
3 unconditionally stable, independently on the numerical method

and discretization chosen in each sub-step.
→ see energy considerations.

4 first-order accuracy in time.
→ see numerical results.



Example

Coupled problem:
• 2D Stokes system in Ω1, unknowns: velocity v1, pressure p1;
• Lumped circuit Υ1, unknowns: nodal pressure y1,1, nodal volume y1,2.
Nonlinearities:

R1,2(y1, t) = R1,2 + α0
1 + α1e−α2y1,1

(autoregulation),

C1,2(y1, t) = C1,2
1 + γ1y1,2

(nonlinear compliance).



Example: numerical results
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Figure 6: Plot of the errors (log scale) wrt the time step: for each unknown (left panel), for vel
/ pressure / 0D (right panel).

23

Comparison between the exact solution and the corresponding numerical approximation for
interface quantities (up) and 0d unknowns (bottom), for three time steps

∆t = 0.01, 0.005, 0.001.



Order of convergence in time
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Figure: Plot of the energy norm errors, in logarithmic scale as a function of the
global time step ∆t = 0.01, 0.005, 0.001 for three examples considered in JCP
2018.



Second order operator splitting

Step 2 Step 1 & 3

Step 1 A1 = non-linear lumped ODEs system
Step 2 A2 = Stokes problem in Ω coupled to the resistive connections
Step 3 A1 = non-linear lumped ODEs system

Step 1, Step 2 and Step 3 communicate ONLY via the initial conditions
⇒ no subiterations



Second-order splitting algorithm: numerical results
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Example 1, linear case, global time step ∆t = 0.01, 0.005, 0.0025.
Strategy I: ∆t1 = ∆t3 = ∆t/5 and ∆t2 = ∆t;
Strategy II: ∆t1 = ∆t2 = ∆t3 = ∆t/5.

L. Carichino, G. Guidoboni, MS. Second-order time accuracy for coupled lumped and distributed fluid flow problems via operator splitting:

a numerical investigation, Numerical Mathematics and Advanced Applications ENUMATH 2019, LNCS 2021.



Part II: A multiscale model coupling hemodynamics,
biomechanics and fluid dynamics in the eye.

Si vous êtes intéressés par les détails sur cette partie, n’hésitez pas à me
contacter directement à

marcela.szopos@parisdescartes.fr



Conclusions and future directions

First steps in deriving a multiscale model of ocular fluid dynamics
are achieved, numerous innovative mathematical and numerical
questions into play:

design of a new partitioned scheme for the time discretization of a
coupled PDE-ODE problem;
multiple connections allowed;
both first-order and second-order accurate in time versions are
proposed.

Models are carefully validated against medical data and clinical
applications are proposed.

A mathematical model to study the interplay between intracranial
pressure, blood pressure and intraocular pressure is both
challenging and very meaningful in terms of clinical applications.

Guidoboni, Sacco, S, Sala, Verticchio-Vercellin, Siesky, Harris. Neurodegenerative disorders of the eye and of the brain: a perspective on

their fluid-dynamical connections and the potential of mechanism-driven modeling., Frontiers in Neuroscience (2020).
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