High voltage and low power supply for an augmented aorta dielectric elastomer

Contact: Morgan Almanza, Université Paris-Saclay, morgan.almanza@ens-paris-saclay.fr and Yoan Civet at Ecole Polytechnique federale de Lausanne

Electroactif polymers paves new way in the field of electromechanical energy conversion. Dielectric elastomer actuators are soft and show high-energy conversion. Recent work on cardiac assist device based on aorta augmentation are very promising (Almanza et al., n.d.). To be implanted, the assisted device need a compact and efficient high voltage, around 7 kV.

Bidirectionnal flyback (Ravi, Satpathy, and Lakshminarasamma 2020; Mottet et al. 2021) as well as H-bridge converter (Pniak et al. 2020) both use stacked MOSFETs to overcome voltage limitation of the MOSFET. Although they provide at least solutions, their efficiency over a full cycle is rather low, around 15% and they are far from being compact. Recently the University Paris-Saclay in a collaboration with EPFL proposed an approach based on a modified Marx generator where the level are controlled and supply through a magnetic field. This new prototype reaches 88% efficiency and can drive and supply through a wireless system.

Although we establish the proof of concept, several challenges before implementing in-vivo the converter must be solved. The internship will be located in the university Paris-Saclay in the SATIE laboratory in Gif sur Yvette, France while the PhD will be located in EPFL in the LAI laboratory (Yves Perriard) in Neuchatel, Switzerland.

In the frame of this work various research axes are possible depending on the student backgrounds and affinities, however the following points must be tackled:

- Improve the integration and use flexible substrate to reduce device thickness
- Reduce the current leakage, exploit low power mode of microcontrollers and improve the control law to increase the efficiency
- Ensure the biocompatibility of the device in term of material and magnetic/electric field

The candidate need to have strong background at least in two of those fields: power electronics, electronics, microcontroller, wireless power transfer,

Bibliography


